Migraines

/Migraines
Migraines 2018-10-15T14:48:35+00:00

Medicinal Properties of Cannabinoids, Terpenes, and Flavonoids in Cannabis, and Benefits in Migraine, Headache, and Pain: An Update on Current Evidence and Cannabis Science

Eric P. Baron DO  (August 2018)

To Proceed to the Article Click Here

There is accumulating evidence for various therapeutic benefits of cannabis/cannabinoids, especially in the treatment of pain, which may also apply to the treatment of migraine and headache. There is also supporting evidence that cannabis may assist in opioid detoxification and weaning, thus making it a potential weapon in battling the opioid epidemic. Cannabis science is a rapidly evolving medical sector and industry with increasingly regulated production standards. Further research is anticipated to optimize breeding of strain‐specific synergistic ratios of cannabinoids, terpenes, and other phytochemicals for predictable user effects, characteristics, and improved symptom and disease‐targeted therapies.


Emerging Role of (Endo)Cannabinoids in Migraine

Pinja Leimuranta, Leonard Khiroug and Rashid Giniatullin  (April 2018)

To Proceed to the Article Click Here

In this mini-review, we summarize recent discoveries and present new hypotheses on the role of cannabinoids in controlling trigeminal nociceptive system underlying migraine pain. Individual sections of this review cover key aspects of this topic, such as: (i) the current knowledge on the endocannabinoid system (ECS) with emphasis on expression of its components in migraine related structures; (ii) distinguishing peripheral from central site of action of cannabinoids, (iii) proposed mechanisms of migraine pain and control of nociceptive traffic by cannabinoids at the level of meninges and in brainstem, (iv) therapeutic targeting in migraine of monoacylglycerol lipase and fatty acid amide hydrolase, enzymes which control the level of endocannabinoids; (v) dual (possibly opposing) actions of cannabinoids via anti-nociceptive CB1 and CB2 and pro-nociceptive TRPV1 receptors. We explore the cannabinoid-mediated mechanisms in the frame of the Clinical Endocannabinoid Deficiency (CECD) hypothesis, which implies reduced tone of endocannabinoids in migraine patients.


Endocannabinoid System and Migraine Pain: An Update

Rosaria GrecoChiara DemartiniAnna M. ZanaboniDaniele Piomelli and Cristina Tassorelli (March 2018)

To Proceed to the Article Click Here

The trigeminovascular system (TS) activation and the vasoactive release from trigeminal endings, in proximity of the meningeal vessels, are considered two of the main effector mechanisms of migraine attacks. Several other structures and mediators are involved, however, both upstream and alongside the TS. Among these, the endocannabinoid system (ES) has recently attracted considerable attention. Experimental and clinical data suggest indeed a link between dysregulation of this signaling complex and migraine headache. Clinical observations, in particular, show that the levels of anandamide (AEA)—one of the two primary endocannabinoid lipids—are reduced in cerebrospinal fluid and plasma of patients with chronic migraine (CM), and that this reduction is associated with pain facilitation in the spinal cord.


Inhibition of monoacylglycerol lipase: Another signalling pathway for potential therapeutic targets in migraine?

Rosaria Greco, Chiara Demartini, Anna Maria ZanaboniLaura BerliocchiDaniele PiomelliCristina Tassorelli  (August 2017)
Drugs that modulate endocannabinoid signalling are effective in reducing nociception in animal models of pain and may be of value in the treatment of migraine. These findings support the hypothesis that modulation of the endocannabinoid system may be a valuable approach for the treatment of migraine. The topographically segregated effect of MGL inhibition in trigeminal/extra-trigeminal areas calls for further mechanistic research.

Interactions between the Kynurenine and the Endocannabinoid System with Special Emphasis on Migraine

Gábor Nagy-Grócz, Ferenc Zádor, Szabolcs Dvorácskó, Zsuzsanna Bohár, Sándor Benyhe, Csaba Tömböly, Árpád Párdutz and László Vécsei  (July 2017)

To Proceed to the Article Click Here

Both the kynurenine and the endocannabinoid systems are involved in several neurological disorders, such as migraine and there are increasing number of reports demonstrating that there are interactions of two systems. Although their cooperation has not yet been implicated in migraine, there are reports suggesting this possibility.


The Use of Cannabis for Headache Disorders

Bryson C. Lochte , Alexander Beletsky, K. Nebiyou Samuel and Igor Grant  (April 2017)
Headache disorders are common, debilitating, and, in many cases, inadequately managed by existing treatments. Although clinical trials of cannabis for neuropathic pain have shown promising results, there has been limited research on its use, specifically for headache disorders. This review considers historical prescription practices, summarizes the existing reports on the use of cannabis for headache, and examines the preclinical literature exploring the role of exogenous and endogenous cannabinoids to alter headache pathophysiology.

Plasma levels of the endocannabinoid anandamide, related N-acylethanolamines and linoleic acid-derived oxylipins in patients with migraine

SandraGouveia-FigueiraKristinaGoldinSanaz A.HashemianAgnetaLindbergMonicaPerssonMalin L.NordingKatarinaLaurellChristopher J.Fowler  (April 2017) 

To Proceed to the Article Click Here

There is evidence that patients with migraine have deficient levels of the endogenous cannabinoid receptor ligand anandamide (AEA). It is not known, however, if this is a localised or generalised phenomenon. In the present study, levels of AEA, related N-acylethanolamines (NAEs) and linoleic acid-derived oxylipins have been measured in the blood of 26 healthy women and 38 women with migraine (26 with aura, 12 without aura) who were matched for age and body-mass index.


The endocannabinoid system and migraine

Greco R, Gasperi V; Maccarrone M; Tassorelli C.  (July 2010)

To Proceed to the Article Click Here

The recently discovered endocannabinoid system (ECS), which includes endocannabinoids and the proteins that metabolize and bind them, has been implicated in multiple regulatory functions both in health and disease. Several studies have suggested that ECS is centrally and peripherally involved in the processing of pain signals. This finding is corroborated by the evidence that endocannabinoids inhibit, through a cannabinoid type-1 receptor (CB1R)-dependent retrograde mechanism, the release of neurotransmitters controlling nociceptive inputs and that the levels of these lipids are high in those regions (such as sensory terminals, skin, dorsal root ganglia) known to be involved in transmission and modulation of pain signals.

Important Notice

Leaving the CB1 Capital Management website to access a website hosted by a party unrelated to CB1 Capital Management. CB1 Capital Management assumes no responsibility for the accuracy of any of these studies nor does CB1 assume any obligation to update any of these studies based on subsequent research.

To Proceed to the Article Click Here

Important Notice

Leaving the CB1 Capital Management website to access a website hosted by a party unrelated to CB1 Capital Management. CB1 Capital Management assumes no responsibility for the accuracy of any of these studies nor does CB1 assume any obligation to update any of these studies based on subsequent research.

To Proceed to the Article Click Here

 

Important Notice

Leaving the CB1 Capital Management website to access a website hosted by a party unrelated to CB1 Capital Management. CB1 Capital Management assumes no responsibility for the accuracy of any of these studies nor does CB1 assume any obligation to update any of these studies based on subsequent research.

To Proceed to the Article Click Here

Important Notice

Leaving the CB1 Capital Management website to access a website hosted by a party unrelated to CB1 Capital Management. CB1 Capital Management assumes no responsibility for the accuracy of any of these studies nor does CB1 assume any obligation to update any of these studies based on subsequent research.

To Proceed to the Article Click Here

Important Notice

Leaving the CB1 Capital Management website to access a website hosted by a party unrelated to CB1 Capital Management. CB1 Capital Management assumes no responsibility for the accuracy of any of these studies nor does CB1 assume any obligation to update any of these studies based on subsequent research.

To Proceed to the Article Click Here

Important Notice

Leaving the CB1 Capital Management website to access a website hosted by a party unrelated to CB1 Capital Management. CB1 Capital Management assumes no responsibility for the accuracy of any of these studies nor does CB1 assume any obligation to update any of these studies based on subsequent research.

To Proceed to the Article Click Here

Important Notice

Leaving the CB1 Capital Management website to access a website hosted by a party unrelated to CB1 Capital Management. CB1 Capital Management assumes no responsibility for the accuracy of any of these studies nor does CB1 assume any obligation to update any of these studies based on subsequent research.

To Proceed to the Article Click Here

Important Notice

Leaving the CB1 Capital Management website to access a website hosted by a party unrelated to CB1 Capital Management. CB1 Capital Management assumes no responsibility for the accuracy of any of these studies nor does CB1 assume any obligation to update any of these studies based on subsequent research.

To Proceed to the Article Click Here